STAT0041: Stochastic Calculus

Lecture 9 - Itô stochastic integral

Lecturer: Weichen Zhao Fall 2024

Key concepts:

- Itô stochastic integral;
- Itô isometry.

9.1 Motivation

Consider the ordinary differential equation

$$
\frac{dX_t}{dt} = f(X_t), \quad X_0 = x_0.
$$

We want to introduce random perturbations on the system

$$
\frac{dX_t}{dt} = f(X_t) + \sigma(X_t)\xi_t, \quad X_0 = x_0
$$

where, ideally, ξ_t should be a continuous, stationary¹ process such

(1) if $t_1 \neq t_2$ then ξ_{t_1} and ξ_{t_2} are independent;

(2) For all $t, \mathbb{E}[\xi_t] = 0.$

Unfortunately such a process does not exist (Exercise 3.11 in [1]). An alternative way is to define

$$
X_t = x_0 + \int_0^t f(X_s)ds + \int_0^t \sigma(X_s)dB_s,
$$

where B_t is a Brownian motion.

9.2 Riemman-Stieltjes integral

Consider a sequence of partitions of the interval $[0, T]$

$$
\tau_n: 0 = t_0^n < t_1^n < \dots < t_{k_n - 1}^n < t_{k_n}^n = T
$$

¹stationary process is a stochastic process whose unconditional joint probability distribution does not change when shifted in time.

and intermediate points

$$
\sigma_n : t_i^n \le s_i^n \le t_i^n, \quad i = 0, \dots, k_n - 1,
$$

such that

$$
\|\pi_n\| := \max_{i=1,\dots,k_n} |t_i^n - t_{i-1}^n| \to 0, \quad n \to \infty
$$

Let f and g two functions on $[0, T]$; the Riemann-Stieltjes integral is defined as

$$
\int_0^T f dg = \lim_{n \to \infty} \sum_{i=0}^{k_n - 1} f(s_{i-1})(g(t_{i+1}) - g(t_i)),
$$

provided this limit exists and it is independent of the sequences σ_n and τ_n . If one requires the Riemann-Stieltjes integral $\int_0^T f dg$ to exist for any function f continuous on $[0, T]$, then a necessary and sufficient condition is that the function g has bounded variation, that is

$$
\sup_{\tau_n}\sum_i|g(t_{i+1})-g(t_i)|<\infty.
$$

Unfortunately, we know with probability 1 the sample paths of the Brownian motion have infinite variation on any finite interval.

As a consequence, if $X = \{X_t\}_{0 \le t \le T}$ is a process with continuous paths, the Riemann-Stieltjes integral

$$
\int_0^T X_t(\omega) dB_t(\omega)
$$

does not exist with probability 1.

9.3 Itô stochastic integral

Recall martingale transform in Lecture 3. For $(\Omega, \mathscr{F},(\mathscr{F}_n), P)$, $n = 0, 1, \ldots$, let (C_n) , $n =$ $0, 1, \ldots$ be a sequence of random variables.

Let (X_n) be a \mathscr{F}_n -martingale, (C_n) be a \mathscr{F}_n -predictable process. Define martingale transform of (X_n) respect to (C_n) :

$$
Y_n := \sum_{k=1}^n C_k (X_k - X_{k-1}), \ k \ge 1, \quad Y_0 = 0.
$$
 (9.1)

Then Y_n is a \mathscr{F}_n -martingale.

We try to construct a continuous time analogue of martingale transform, that is stochastic integral.

Consider filtrated probability space $(\Omega, \mathscr{F}, (\mathscr{F}_t), P)$ satisfies usual conditions. B_t is a \mathscr{F}_t adapted Brownian motion, X_t is a \mathscr{F}_t -adapted process.

Definition 9.1 Let \mathscr{L}_T^2 the class of processes that are measurable, \mathscr{F}_t -adapted and square integrable. That is, the class of measurable processes X_t such that X_t is \mathscr{F}_t -adapted for all $t \in [0, T]$ and

$$
||X||_{\mathscr{L}_{T}^{2}}^{2} := \mathbb{E}\left[\int_{0}^{T} |X_{t}(\omega)|^{2} dt\right] < \infty.
$$

We can check that

- (1) \mathcal{L}_T^2 is a linear space;
- (2) \mathcal{L}_T^2 is equipped with inner product

$$
\langle \phi, \psi \rangle = \mathbb{E}\left[\int_0^T (\phi_t(\omega)\psi_t(\omega)) \mathrm{d}t\right], \quad \phi, \psi \in \mathscr{L}_T^2
$$

(3) \mathcal{L}_T^2 is a complete space with metric

$$
\|\phi - \psi\| = \left(\mathbf{E} \int_0^T |\phi_t - \psi_t|^2 dt\right)^{\frac{1}{2}},
$$

that is for Cauchy sequence $\phi^{(n)} \in \mathcal{L}_T^2$, exists limit $\phi \in \mathcal{L}_T^2$.

Definition 9.2 (Simple step process) A process $H_t \in \mathscr{L}_T^2$ is simple step process if it is of the form

$$
H_t = \sum_{i=0}^{n-1} H_{t_i}(\omega) \mathbf{1}_{(t_i, t_{i+1}]}(t) + H_0(\omega) \mathbf{1}_0(t), \quad 0 \le t \le T,
$$
\n(9.2)

where $0 = t_0 < t_1 < \cdots < t_n = T$ and $H_{t_i}(\omega)$ are \mathscr{F}_{t_i} -measurable bounded random variables. Denote set of all simple step process as \mathscr{L}_0 .

Lemma 9.3 For all $X_t \in \mathscr{L}_T^2$, there exists a sequence of simple step processes $H_t^{(n)}$ $t^{(n)}$, $n \geq 1$ such that

$$
\lim_{n \to \infty} \mathbb{E} \left[\int_0^T \left| X_t - H_t^{(n)} \right|^2 dt \right] = \lim_{n \to \infty} \left\| X - H^{(n)} \right\|_{\mathcal{L}_T^2}^2 = 0. \tag{9.3}
$$

Definition 9.4 (Itô integral of simple step process) The Itô integral of simple step process $H_t \in \mathscr{L}_0$ in (9.2) is defined as

$$
\int_0^T H_t \mathrm{d}B_t = \sum_{i=0}^{n-1} H_{t_i}(\omega) \left(B_{t_{i+1}} - B_{t_i} \right).
$$

Proposition 9.5 For $H, G \in \mathcal{L}_0$ and $a, b \in \mathbb{R}$:

(1) (Mean zero) $\mathbb{E}\left[\int_0^T H_t \mathrm{d}B_t\right] = 0;$ (2) (Itô isometry) $\mathbb{E}\left[\left(\int_0^T H_t \mathrm{d}B_t\right)^2\right] = \mathbb{E}\left[\int_0^T |H_t|^2 \mathrm{d}t\right]$; (3) (Linearity) $\int_0^T (aH_t + bG_t) \, dB_t = a \int_0^T H_t \, dB_t + b \int_0^T G_t \, dB_t.$

Definition 9.6 (Itô integral) Itô integral of $X_t \in \mathscr{L}_T^2$ is defined by

$$
\mathcal{I}_T[X] := \int_0^T X_t dB_t = \lim_{n \to \infty} \int_0^T H_t^{(n)} dB_t, \quad L^2
$$

where $H_t^{(n)}$ $t^{(n)}$, $n \geq 1$ is a sequence of simple step processes satisfied (9.3).

Example 9.7 Calculate $\int_0^t B_s \, dB_s$.

References

[1] Oksendal B. Stochastic differential equations: an introduction with applications[M]. Springer Science & Business Media, 2013.